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Abstract 

Formation of a suitable null basis is the main problem of finite elements analysis via force method. For an optimal 
analysis, the selected null basis matrices should be sparse and banded corresponding to sparse, banded and well-conditioned 
flexibility matrices. In this paper, an efficient method is developed for the formation of the null bases of finite element models 
(FEMs) consisting of tetrahedron elements, corresponding to highly sparse and banded flexibility matrices. This is achieved by 
associating special graphs with the FEM and selecting appropriate subgraphs and forming the self-equilibrating systems 
(SESs) on these subgraphs. Two examples are presented to illustrate the simplicity and effectiveness of the presented graph-
algebraic method. 

Keywords: Three dimensional elements, Tetrahedron elements, Higher order elements, Finite element method, Force method, 
Null basis matrix, Flexibility matrix, Graph Theory. 

1. Introduction 

The force method of structural analysis in which the 
member forces are used as unknowns is appealing to 
engineers since the properties of members of a structure 
most often depend on the member forces rather than joint 
displacements. This method was used extensively until 
1960. The advent of the digital computer and the 
amenability of the displacement method for computation 
attracted most researchers. As a result, the force method 
and some of the advantages it offers in optimization and 
non-linear analysis and optimization has been neglected. 

Five different approaches are adopted for the force 
method of structural analysis, classified as: Topological 
force methods, Graph theoretical methods, Algebraic force 
methods, Mixed algebraic-combinatorial force methods, 
and Integrated force method. 

Topological methods have been developed by 
Henderson [1] Maunder [2] and Henderson and Maunder 
[3] for rigid-jointed skeletal structures. Graph theoretical 
methods based on cycle bases of the graph models are due 
to Kaveh [4-5]. These methods are generalized to cover 
different types of skeletal structures such as rigid-jointed 
frames, pin-jointed planar trusses and ball-jointed space 
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trusses in [6-7]. 
Algebraic methods have been developed by Denke [8], 

Robinson [9], Topçu [10], Kaneko et al. [11], and Soyer 
and Topçu [12]. Mixed algebraic-topological methods 
have been used by Gilbert et al. [13] Coleman and Pothen 
[14-15], Pothen [16], and Heath et al. [17]. The integrated 
force method has been developed by Patnaik [18-19], in 
which the equilibrium and compatibility conditions are 
satisfied simultaneously in terms of the element force 
variables. 

Recently applications of the graph theory methods are 
extended to two classes of finite element models. The first 
class takes the element forces along the edges of the 
elements [20-25] and in the second class the element 
forces are concentrated at the mid-edge of the edges of the 
elements [26]. 

In this paper, an efficient method is developed for the 
formation of null bases for finite element models 
comprising of tetrahedron elements leading to highly 
sparse and banded flexibility matrices, and can be used for 
optimal finite element analysis by the force method. This 
is achieved by associating a special graph to the finite 
element model and selecting subgraphs (known as γ-cycles 
[6]) for the formation of localized self-equilibrating stress 
systems (null vectors). Their numerical values are 
calculated by an algebraic process. The efficiency and 
accuracy of the present method is illustrated through 
simple examples. 
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2. Formulation of Force Method 

Consider a discrete or discretized structure which is 
statically indeterminate. The m-dimensional vector r 
contains independent element (member) forces, and an n-
dimensional vector p denotes the nodal loads. The 
equilibrium equations of the structure can then be 
expressed as: 

 
pAr   (1) 

 
where A is an nm equilibrium matrix. Assuming 

stability for the structure, the equilibrium matrix will have 
full rank, i.e. nranknmt  )(,0 A  . 

Also the member forces can be written as the sum of 
the particular and complementary solutions, where q is the 
t-dimensional vector of the redundant forces. 

 
qBpBr 10   (2) 

 
B0 and B1 have m rows and n, and t columns, 

respectively. Pre-multiplying both sides of Eq. (2) by A 
and using Eq. (1) lead to 

 
IAB 0  (3) 

0AB 1  (4) 
 
Here, B0 and B1 are not unique for a structure and 

many of such matrices can be formed. B1 is called static 
basis or self-stress matrix. This basis is known as null 
basis in mathematics and each column of the null basis 
matrix is known as a null vector. The null space and null 
vectors are mathematical counterparts of the 
complementary solution space and self-equilibrating 
systems, respectively. 

Minimizing the complementary potential energy 
subjected to the constraint as in Eq. (1) requires r to 
minimize the quadratic form 

 

)(min
2
1 rFr m

timize  (5) 

 
Here, Fm is a mm block diagonal matrix known as the 

unassembled flexibility matrix containing the flexibility 
matrices of the elements of a structure in its block diagonal 
entries. Coupling Eq. (5) and Eq. (2) results in 
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1
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t

m
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According to Eq. (6) by solving a set of equations, 

redundant forces can be found. 
After the determination of the member forces, using 

the load-displacement relationship for each member, one 
can write member distortion as 

 

        





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Using virtual work, nodal displacements can be 
calculated as 

 

    uBv t
00   (8) 

 
Combining Eq. (7) and Eq. (8) leads to 
 

qBFBpBFBv 10000 m
t

m
t   (9) 

 

Substituting Eq. (6) in Eq. (9) and using jm
t
iij BFBD   

leads to 
 

  FppDDDDv  
10

1
1101000  (10) 

 
Therefore the overall flexibility matrix of structure is 

obtained as 
 

10
1

110100 DDDDF   (11) 

 
For free vibration of linear structure without damping 

we have 
 

      0vMK  0
2  (12) 

 
Obviously pKv 0  and substituting Eq. (10) in Eq. 

(12) leads to 
 

       0pFMI  2  (13) 

 
Then the frequency equation of the system in the force 

method is obtained as 
 

     2/10       andIFM  (14) 

 
Efficiency of this analysis depends on the required time 

for the formation of the matrix 11 BFBG m
t  and its 

characteristics, i.e. sparsity and bandedness together with 
its conditioning. For the formation of a well-structured 
matrix G, one should select a well-structured B1 matrix. 

Many algebraic procedures based on various matrix 
factorizations such as Gauss-Jordan elimination, LU, QR, 
LQ exist for the formation a null basis matrix B1 of an 
equilibrium matrix A [13-17]. Basic concept of these 
methods is described briefly in the following. Let matrix A 
be partitioned using a column permutation matrix P as 
below: 

 
 21, AAAP   (15) 

 
Where A1 is a nn non-singular matrix. Obviously 

matrix B1 can be written as 
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Turn-back method 
This method is developed in [10-11] and it is briefly 

described in this section. We write the matrix A= (a1, a2, 
a3,…,an)  by columns. A start column is a column such 
that the ranks of (a1, a2, a3,…, as-1) and (a1, a2, a3,…, as) 
are equal. Equivalently, as is a start column if it is linearly 
dependent on the lower-numbered columns. The 
coefficients of this linear dependency give a null vector 
whose highest numbered non-zero is in position s. It is 
easy to see that the number of start columns is t = m – n, 
which is the same as the dimension of the null space of A. 

The start column can be found by performing a QR 
factorization of A, using orthogonal transformations to 
annihilate the sub-diagonal non-zeros. Suppose that in 
carrying out the QR factorization we do not perform 
column interchanges but simply skip over any columns 
that are already zero on and below the diagonal. The result 
will then be a factorization of the form 

 

 

(17) 

 
The start columns are those columns where the upper 

triangular structure jogs to the right, that is, as is a start 
column if the highest non-zero position in column s of R is 
no larger than the highest non-zero position in earlier 
columns of R. 

The Turn-back method finds one null vector for each 
start column as by ‘turning back’ from column s to find the 

smallest k for which columns (as, as-1, as-2,…, as-k)  are 
linearly dependent. The null vector has a non-zero only in 
position s – k through s. Thus, if k is small for most of the 
start columns, then the null basis will have a small profile. 
Note that the Turn-back operates on A, and not on R. The 
initial QR factorization of A is used only to determine the 
start columns, and then discarded. 

The null vector that Turn-back finds from start column 
as may not be non-zero in position s. Therefore, turn-back 
needs to have some way to guarantee that its null vectors are 
linearly independent. This can be accomplished by 
forbidding the left-most column of the dependency for each 
null vector from participating in any later dependencies. 
Thus, if the null vector for start column as has its first non-
zero in position s – k, every null vector for a start column to 
the right of as will be zero in position s – k. 

3. Independent Element Forces and Flexibility 
Matrix of Tetrahedron Elements 

For the generation of the equilibrium matrix A of a 
FEM, a system of independent force systems should be 
defined and also their relations with the element nodal 
forces should be established [27]. 

In displacement method we have three forces at each 

node of the element. For an element with N nodes, N3
nodal forces can be defined. Using six equilibrium 
equations, 63 N  independent forces will be remained. In 
other words, there are 63 N  independent element forces 
in an element with N nodes. The nodal forces and element 
forces systems are shown in Table 1 for tetrahedron 
elements with various numbers of boundary nodes. For the 
higher order elements, the element forces system can be 
obtained with the same procedure. 

 
Table 1 The nodal forces and element forces systems for various tetrahedron elements. 

Element 
Number of 

Nodes 
Size of T Nodal Forces S Elemental Forces F Element shape 

Linear 4 4×6 tSSS ]..[ 121112   tFFF ]..[ 6116   

Quadratic 10 30×24 tSSS ]..[ 301130   tFFF ]..[ 241124   
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Cubic 20 60×54 tSSS ]..[ 601160   tFFF ]..[ 541154   

Quartic 35 105×99 tSSS ]..[ 10511105   tFFF ]..[ 991199   

 
These element forces F can be related to the nodal 

forces S for a N-node element by a )63()3(  NN  

transformation matrix using Eq. (18) as 
 
 

TFS   (18) 
 
Transformation matrix can be formed simply as 
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where ix , iy  and iz  are the Cartesian coordinates of 

node i, ,
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are the direction cosines and ijl  is the length of the line 

between nodes i and j. 
Formulation of a discrete element equivalent to the 

actual continuous structure is the first step in matrix 
structural analysis. For a linear system it can be assumed 
that the stresses   are related to the forces F by linear 
equation as 

 
Fcσ   (19) 

 
The matrix c  represents a statically equivalent stress 

system due to the unit force F. The flexibility matrix of an 
element can be written as 

 

 V

t dVm cφcf  (20) 

 
The integration is taken over the volume of the 

element, where φ is the matrix relating the stresses to 
strains ε = φσ  in three dimensional problems. The primary 
step in the formation of the flexibility matrix of an element 
is determining the matrix c . It is obvious that the ith 
column of c  represents the resultant stresses due to unit 
element force Fi  in the force method and also stresses due 
to nodal forces S  is equal to the ith column of T utilizing 
the displacement method. Hence, we can form matrix c  
using the stiffness properties of the tetrahedron element 
using the displacement method. Now the flexibility matrix 
of the element in the force method is formed from Eq. (20) 
using Gauss numerical integration method with eight 
Gauss points (2×2×2 Gauss Points Integration). 
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4. Graphs Associated with Finite Element Models 

4.1. Basic graph theory definitions 

A graph S consists of a set of elements, N(S), called 
nodes and a set of elements, M(S), called members, 
together with a relation of incidence which associates two 
distinct nodes with each member, known as its ends. Two 
nodes of a graph are called adjacent if these nodes are the 
end nodes of a member. A member is considered incident 
with a node if it is an end node of the member. The degree 
of a node is the number of members incident with that 
node. A subgraph Si of a graph S is a graph for which N(Si) 
 N(S) and M(Si)  M(S), and each member of Si has the 
same ends as in S. A path of S is a finite sequence Pi = {n0, 
m1, n1, ..., mp, np} whose terms are alternately distinct 
nodes ni and distinct members mi of S for 1  i  p, and ni-1 
and ni are the two ends of mi. Two nodes ni and ni are said 
to be connected in S if there exists a path between these 
nodes. A cycle is a path (n0, m1, n1,..., mp, np) for which n0 
= np and p  3; i.e. a cycle is a closed path. The cycles of a 

graph form a vector space known as the cycle space. The 
dimension of this space for a connected graph S is known 
as the first Betti number, b1(S) = M(S)N(S)+1, of the 
graph, where M(S) and N(S) are the number of members 
and nodes of S, respectively. In order to transfer the 
topological property of a finite element model to the 
connectivity of a graph ten different graphs are introduced 
in [28-29]. 

4.2. An interface graph 

The interface graph of a finite element model denoted 
by IG(FEM) can easily be constructed for tetrahedron 
FEM using the following rules: 

1. This graph contains all the nodes of the FEM. 
2. For each tetrahedron element of FEM, 63 N  

graph members are associated. The edges of the interface 
graph will be numbered sequentially according to the 
patterns which were illustrated in Table 2. As was 
illustrated in Table. 2, there are some internal graph 
members in interface graph of a cubic, quartic or higher 
order tetrahedron element. 

 
Table 2 Element forces and internal graph member for various tetrahedron members. 

Element shape Element forces Internal members 

Linear 

 

- 

Quadatic 

 

- 

Cubic 

 
 

[ 9 ,13] 
[ 9 ,11] 
[11,13] 
[ 9 ,20] 
[11,20] 
[13,20] 
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Quartic 

  

[ 9 ,11],[11,13] 
[13,  9],[16,18] 
[18,33],[33,16] 
[19,21],[21,34] 
[34,19],[15,32] 
[32,22],[15,22] 
[ 2 ,35],[ 3 ,35] 
[ 4 ,35],[ 9 ,35] 
[11,35],[13,35] 
[15,35],[16,35] 
[18,35],[19,35] 
[21,35],[22,35] 
[32,35],[33,35] 

[34,35] 

 

4.3. Natural associate graph 

The natural associate graph represented by NAG(FEM) 
is constructed by the following rules: 

1. Nodes of the NAG(FEM) correspond to the 
elements of FEM. 

2. For each pair of elements in FEM having 
specified number of common nodes, one member is added 
between the corresponding two nodes in NAG(FEM). The 
number of common nodes is dependent on the order of 
FEM elements. If two tetrahedron elements have these 
common nodes, they are adjacent or they have common 
side. According to Table 1, the number of common nodes 
for each type of element is as follow: 

 

Element 
Number of common 

nodes for two 
adjacent elements 

Linear 3 

Quadratic 6 

Cubic 10 

Quartic 15 
 
NAG(FEM) can be constructed using the following 

procedure: One of the preliminary steps in FEA is defining 
the elements with their connected nodes. In this way the 
element connectivity matrix is constructed which contains 
the element-node incidence relationships. In the process of 
constructing the element connectivity matrix, another 
matrix which contains node-element incidence properties 
can be formed. This matrix is named the node connectivity 
matrix.  Now using the element connectivity and the node 
connectivity matrices leads to an algorithm with 
complexity O(n) for an efficient generation of NAG.  

In order to recognize the adjacent elements to the nth 
element which have common nodes or one common face, 
first the connected nodes to the nth element are identified 
from the element connectivity matrix. In the subsequent 
step using the node connectivity matrix, elements which 
have at least one common node with the nth element are 
identified. Now it is convenient to seek for the adjacent 
elements in this reduced search space. A FEM with 24 

tetrahedron elements and its corresponding NAG are 
illustrated in Fig. 1. 

 

(a) (b) 
Fig. 1 (a) Finite element model with 24 tetrahedron elements, (b) 

Natural associate graph (NAG) 

4.4. Negative incidence number 

Negative incidence number (NIN) is necessary for each 
node of NAG(FEM). This number can be found as 
following: 

After generation of natural associate graph of the FEM, 
use an efficient method for its nodal numbering. A typical 
edge of the graph connects smaller number to the node 
with higher number. Negative incidence number of each 
node is the number of its adjacent nodes with smaller 
nodal number. Except the node numbered as 0, all the 
other nodes have one, two or three negatively incident 
edges defined as the negative incidence number of the 
node. Owing to the importance of these numbers in 
recognizing the types of SESs, the negative incidence 
numbers of the nodes of the graph should carefully be 
calculated. In Fig. 2, a tetrahedron FEM with element 
numbering, its corresponding associate graph and negative 
incidence number of nodes are shown. The nodes should 
be numbered such that the incidence numbers do not 
become large. Any simple nodal ordering will lead to a 
logical ordering. 
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(a) (b) 

Fig. 2 Finite element model with natural associate graph (red 
part); (a) nodal numbering of NAG; (b) negative incidence 

numbers of NAG 

5. Pattern Corresponding to the Self-
Equilibrating Systems 

Considering Table 2, in order to find the patterns 
corresponding to the self-equilibrating systems, a 
tetrahedron element is simulated as a spatial truss formed 
as the 1-skeleton of the tetrahedron element together with 
some diagonal and internal members. This is possible 
since the independent element forces are applied in the 
nodes and are along the edges of the element. In Fig. 3, 
two interface graphs with four linear and quadratic 
elements are shown which are simulated as a spatial truss 
containing some multiple members. 
 

 
Fig. 3 (a) An IG(FEM) of four linear elements, b) An IG(FEM) 

of four quadratic elements 
 
The statical indeterminacy of a spatial truss with m 
members and n nodes is given as 63)(  nmS ; 

therefore, the degree of statical indeterminacy (DSI) of the 
entire model supported in a statically determinate manner 

can be calculated with the same relationship as 
 

63)63(  nMNDSI  (21) 
 
where M  is the total number of finite elements, N is the 
number of nodes of one element and n  is the total number 
of nodes of the FEM. 
With the above simulation, the patterns of the self-
equilibrating systems can be identified as follows: 

5.1. Type I self-equilibrating systems 

For each k multiple member in equivalent truss model 
of FEM, there are k unknown forces and one equilibrium 
equation in the member’s direction. Thus DSI of the 
substructure is equal to k-1 and k-1 self-equilibrating 
systems can be generated on each k multiple member of 
interface graph of the FEM. In this way, first each k 
multiple members are arranged in ascending order as (m1, 
m2, m3,…, mk-1, mk) where (m1 < m2 < m3 <…< mk-1 < mk). 
Each selection of two members from this list is valid to 
construct a type I self-equilibrating system, but in order to 
achieve a better bandwidth reduction; selection of adjacent 
members from the defined list is preferable. Therefore k-1 
duplicate members are selected as (m1, m2), (m2, m3),…, 
(mk-1, mk). Each pair (mi, mj) with   i < j represents the 
numbers of corresponding self-equilibrating system. The 
member with bigger number is selected as the generator of 
the current SES and also as a redundant force. The null 
vectors corresponding to the type  SESs have two non-
zero entries in rows i and j equal to 1 and 1, respectively. 

For FEMs with tetrahedron elements, more than 65% 
of the total self-stress systems are of Type I. Thus, a large 
percent of the minimal null vectors can be formed only by 
the determination of member numbers of these pairs. It 
should be noted that in the process of the formation of the 
interface graph, these pairs and their numbers can simply 
be identified. 

5.2. Type II self-equilibrating systems 

There are other types of self-equilibrating systems 
which are extracted from two adjacent elements of FEM. 
In other words, for two adjacent elements with N nodes, 
the DSI can be calculated as: 

 

6)2(32)63(

63)63(




nodescommonNNDSI

nMNDSI
 (22) 

 
According to above equation, DSI of two adjacent 

elements for various orders can be obtained as 
demonstrated in Table 3. The number of SESs of Type I is 
the same as common member of adjacent element. Thus 
the number of remaining self-equilibrating systems is 
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Table 3 The DSI, SESs of Type I and II of two adjacent elements. 

Element N Common nodes 
n 

2N-common nodes 
m 

2×(3N-6) 
DSI 

m-3n+6 
Type I 

common edges 
Type 

II 
Linear 4 3 5 12 3 3 0 

Quadratic 10 6 14 48 12 9 3 
Cubic 20 10 30 108 24 15 9 

Quartic 35 15 55 198 39 24 15 
 

In other words, these SESs should be extracted from 
two adjacent elements. For example, the remaining 
subgraphs for two adjacent elements are shown in Fig. 4. 
After deleting the generators corresponding to type I SESs, 
the null vectors should be calculated from the remaining 

subgraph. These null vectors can easily be generated on 
the corresponding sub-structure utilizing an algebraic 
method. It should be noted that for linear elements, there is 
no SES of Type II. 

 
 

 
Fig. 4 Subgraph corresponding to SESs of type II 

 
Apart from the aforementioned about generating the 

SESs of Type II, if there is at least a negative incidence 
number higher than one in a FEM, another important point 
should be considered which is explained below: 

Some of the calculated SESs of Type II are not 
independent of the others. For example, for a FEM with 
four elements, four couple of adjacent elements can be 
recognized. The number of SESs of Type II can be 
obtained according to Eq. (23). It means that for each 
couple of two adjacent elements, 3, 9 or 15 SESs of Type 
II should be extracted. But, some of these SESs are 
dependent and should not be selected.  For determining the 
independent SESs, an appropriate approach is proposed. In 
this approach, independent SESs will be recognized 
utilizing negative incidence number of elements and QR 
factorization method, simultaneously.   

The SESs of Type II are extracted from two adjacent 
elements in a FEM which are the same as members of 
NAG(FEM). If a member of NAG(FEM) connects two 
elements iM  and jM  where 1iNIN or 1jNIN , the 

independent SESs of Type II which can be extracted from 
the subgraph corresponding to these two adjacent elements 
can be recognized by QR factorization method.  

The dependent SESs can be found by performing a QR 
factorization of ],[ 111

IITypeIType BBB  , using orthogonal 

transformations to annihilate the sub-diagonal non-zeros 
where  

ITypeB1  : all SESs of Type I 
IITypeB1 : all independent SESs of Type II which are 

calculated up to now. 
 Suppose that in carrying out the QR factorization we 

do not perform column interchanges but simply skip over 
any columns that are already zero on and below the 
diagonal. The dependent SESs are those columns where 
the upper triangular structure jogs to the right, that is, 
column s is dependent SESs if the highest non-zero 
position in column s of R is no larger than the highest non-
zero position in earlier columns of R. 

5.3. Type III self-equilibrating systems 

Sub-structures which are topologically identical to the 
minimal cycles of the natural associate graph of FEM 
contain some type I, II and one or six type III self-
equilibrating systems. In general, two types of minimal 
cycles can be extracted from the associate graph of an 
FEM. These cycles are as follows: 

a) Type I minimal cycles of NAG(FEM) 
In these cycles all the corresponding finite elements 

have at least two common nodes. Each cycle in this type 
passes through M finite elements as illustrated in Fig. 5. 
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Fig. 5 Minimal cycles of NAG(FEM) pass through M finite elements which have at least two common nodes. 

 
Corresponding interface graph of these M elements 

have n nodes and m edges for a FEM with N node 
elements which was calculated in Table 4. The DSI can be 
obtained, too. 

By considering the SESs of Type I and II, the 
indeterminacy of remained subgraph is equal to 1 for all 
type of elements as 
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Thus, each Type I cycle corresponds to one null vector and 
the numerical values are calculated utilizing an algebraic 
method. 

 
Table 4 Calculation of Type I cycle of NAG 

Element 
m 

Number of 
members 

n 
Number of Nodes 

DSI 
( 63  nm ) 

Type I 
SESs 

Type II 
SESs 

Type III SESs 
(DSI – Type I – 

Type II) 
Linear M×6 M×4 - M×3 + 2 3M 3M-1 0 1 

Quadratic M×24 M×10 - M×6 + 3 12M-3 9M-2 3M-2 1 
Cubic M×54 M×20 - M×10 + 4 24M-6 15M-2 9M-5 1 

Quartic M×99 M×35 - M×15 + 5 39M-9 24M-4 15M-6 1 
 

It should be noted that all the null vectors 
corresponding to cycles cannot be used in the formation of 
the final null basis. In other words, some of these SESs are 
dependent and should be selected and ignored. Here, QR 
factorization method should be applied to recognize 
dependent vectors. 

b) Type II minimal cycles of NAG(FEM) 

Each minimal cycle that surrounds an opening is called 
the type II minimal cycle. For example, consider Fig. 6. In 
this figure, a cube is divided in to five tetrahedron 
elements. Using twelve cubes or sixty tetrahedron 
elements, an opening with its NAG is generated. In this 
NAG there is a minimal cycle of type II. 

 

 

(a) (b) 
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(c) 
Fig. 6 (a) A cube comprising of five tetrahedron elements, (b) NAG of a cube, (c)A FEM with sixty tetrahedron elements conclude a 

minimal cycle of type II and its NAG 
 
Such a cycle passes through M   finite elements and its 
corresponding interface graph has 

MnodescommonN  )( nodes and )63(  NM  

members. The DSI of subgraph is 
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and 
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  SESs of type II can be extracted. 

 
The remaining SESs which can be extracted from interface graph corresponding to type II minimal cycle of NAG are 
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Therefore, each type II minimal cycle corresponds to six 
null vectors which are calculated utilizing an algebraic 
method. 

6. Selection of Generators 

The most important point in type II and type III self-
equilibrating systems is to select appropriate generators, 

because by eliminating these generators from IG(FEM), 
the sub-structure of primary structure of the IG(FEM) 
must remain stable. To achieve this, the following rule for 
appropriate selection of generators of type II SESs is 
suggested. 

In each SES of type I, the member with bigger number 
is selected as the generator of the current SES and also as a 
redundant force. By now, in each subgraph corresponding 
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to Type II and type III SESs, those members are selected 
as the generators which have three properties as follows: 

1. The candidate member was not selected as 
generator of previous SESs of any types. 

2. By deleting the selected member, the remained 
subgraph will be stable. 

3. The selected member has non-zero entries in an 
independent null vector. 

7. Algorithm 

Step 1: Generate the associate graph of the FEM and 
use an efficient method for its nodal numbering [26]. It is 
obvious that good numbering of this graph corresponds to 
good numbering of elements of the FEM. This numbering 
leads to a banded adjacency matrix of the graph and 
correspondingly to a banded flexibility matrix. Since 
numbering the members of the interface graphs 
corresponds to the element numbering of the finite 
elements, such a numbering is the only parameter for 
controlling the bandwidth of the flexibility matrix. 
Negative incidence number of the NAG(FEM) should be 
calculated in this step. 

Step 2: Set up the equilibrium matrix of the FEM. 
Step 3: Generate the interface graph and perform its 

numbering. The numbering of this graph should be 
performed according to the element numbering of the 
considered FEM. After this numbering the interface graph 
can easily be formed and its members can be numbered. 

Step 4: Find the type I self-equilibrating systems. All 
multiple members of the interface graph are identified and 
the values −1 and 1 are assigned to appropriate rows 
(corresponding to the member numbers) and the 
corresponding minimal null vectors are created. 

Step 5: Find the type II self-equilibrating systems. The 
SESs of type II should be extracted from two adjacent 

elements and independent ones should be selected among 
these SESs utilizing the approach which is explained in 
Sec.5.2. Calculate the corresponding null vectors from the 
relevant equilibrium sub-matrix in this step. Selection of 
generators should be done here. 

Step 6: Find the type III self-equilibrating systems. For 
each minimal cycle of natural associate graph of FEM one 
or six SESs should be extracted as was described in Sec. 
5.3. Calculate the corresponding null vectors from the 
relevant equilibrium sub-matrix and select their generators. 

Step 7: Order the null vectors. At this step the 
constructed null vectors should be ordered such that their 
last non-zero entries form a list with an ascending order. 

8. Numerical examples 

In this section two FEMs are considered, which are 
assumed to be supported in statically determinate fashion. 
The equilibrium matrices are formed. Null bases and the 
flexibility matrices are constructed and the required 
computational times, and the condition numbers are 
calculated. In all the following examples, nz represents the 
number of non-zero entries and max/min is the ratio of 
the extreme eigenvalues taken as the condition number of 
a matrix. The comparison between present algorithm and 
algebraic force method will be shown in this section. 
Finally the present method is validated through 
comparison of analysis using the present graph-theoretical 
force method and the displacement method. 

Example 1. 
A thick beam-type structure supported in a statically 

determinate fashion is depicted in Fig. 7. The natural 
associate graph of FEM is illustrated in Fig. 8.This 
structure is discretized using 240 tetrahedron finite 
elements. The properties of the model are as follows: 

 
Number of tetrahedron elements, M = 240     

Elastic modulus, E = 2e+7 kN/m2     
Poisson’s ratio , ν = 0.2     

Number of nodes, N 
Linear Quadratic Cubic Quartic 

205 1,053 1,525 3,321 
DSI 1,131 4,167 8,391 13,803 

Number of type I SESs 1,012 3,212 5,588 8,800 
Number of type II SESs 0 836 2,684 4,884 
Number of type III SESs 119 119 119 119 

 

 
Fig. 7 A thick beam-type structure which is discretized using 240 tetrahedron elements 

 



358 A. Kaveh, M.S. Massoudi 
 

 
Fig. 8 Natural associate graph of FEM for thick beam-type structure of example 1 

 
The pattern of equilibrium matrix is shown in Fig. 9 for 

various elements. The pattern of the final null basis 
obtained by the present method and LU factorization 
method are depicted in Fig. 10. The flexibility matrix (G) 

is also well-structured as shown in Fig. 11. The 
comparison between present method and LU factorization 
method is prepared in Table 5. 

 

(a)

(b) 

(c) 
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(d) 

Fig. 9 Pattern of equilibrium matrix of example 1, (a) Linear element, (b) Quadratic element, (c) Cubic element, (d) Quartic 
element 

 
 
 
 

 
Graph Theoretical LU Factorization 

(a) 
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Graph Theoretical LU Factorization 
(b) 

Graph Theoretical LU Factorization 
(c) 
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Could not be calculated 

Graph Theoretical LU Factorization 
(d) 

Fig. 10 Pattern of null basis matrix of example 1, a) Linear element, b) Quadratic element, c) Cubic element, d) Quartic element 
 
 
 

(a) (b) 
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(c) (d) 
Fig. 11 Pattern of flexibility matrix 11 BBt  using present method for example 1, a) Linear element, b) Quadratic element, c) Cubic element, d) 

Quartic element 
 
 

Table 5 The comparison between present method and LU factorization method for Example 1 

Element 
methodLU

methodpresent

Time

Time
 

)(

)(

1

1

methodLU

methodpresent

Bnz

Bnz
 

)( 11
min

max BBt 



 1max BA  

present 
method 

LU 
method 

present 
method 

LU 
method 

Linear 0.57 0.161 4.61e+4 3.45e+5 2.22e-16 1.38e-14 
Quadratic 0.16 0.074 2.23e+5 8.45e+6 1.33e-15 5.54e-13 

Cubic 0.01 0.028 4.96e+5 2.64e+7 1.13e-14 9.44e-12 
Quartic - - 4.53e+4 - 7.25e-14 - 

 
 

Example 2. 
A thick wall structure is depicted in Fig. 12. The 

natural associate graph of FEM is illustrated in Fig. 

13.This structure is discretized using 504 tetrahedron finite 
elements. The properties of the model are as follows: 

 
Number of tetrahedron elements, M = 504   

Elastic modulus, E = 2e+7 kN/m2   
Poisson’s ratio , ν = 0.2   

Number of nodes, N 
Linear Quadratic 

195 1,053 
DSI 2,445 8,943 

Number of type I SESs 2,166 6,888 
Number of type II SESs 0 1,776 
Number of type III SESs 279 279 
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Fig. 12 A thick wall structure 

 

 
Fig. 13 Natural associate graph of FEM for thick wall structure of example 2. 

 
The pattern of equilibrium matrix is shown in Fig. 14 for 
linear and quadratic elements. The pattern of the final null 
basis obtained by the present method and LU factorization 
method are depicted in Fig. 15. The flexibility matrix (G) 

is also well-structured as shown in Fig. 16. The 
comparison between present method and LU factorization 
method is prepared in Table 6. 
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(a) 

(b) 
Fig. 14 Pattern of equilibrium matrix of example 2, a) Linear element, b) Quadratic element 

 
 

 

Graph Theoretical LU Factorization 
(a) 
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Graph Theoretical LU Factorization 

(b)
Fig. 15 Pattern of null basis matrix of example 2, a) Linear element, b) Quadratic element 

 

(a) (b) 
Fig. 16 Pattern of flexibility matrix 11 BBt  using present method for example 2, a) Linear element, b) Quadratic element 

 
Table 6 The comparison between present method and LU factorization method for example 2. 

Element 
methodLU

methodpresent

Time

Time

 
)(

)(

1

1

methodLU

methodpresent

Bnz

Bnz

 

)( 11
min

max BBt 



1max BA
 

present 
method 

LU 
method 

present 
method 

LU 
method 

Linear 0.38 0.135 5.50e+5 5.52e+5 4.77e-15 2.81e-13 
Quadratic 0.09 0.072 2.15e+6 2.30e+7 2.05e-14 2.84e-12 

 
Finally the present method is validated through 

comparison of nodal displacements using the present 
graph-theoretical force method and the displacement 
method. Six concentrated forces are applied at the six 

nodes of wall and the structure is supported in a statically 
determinate fashion as shown in Fig. 17. The amount of P 
is 10 kN and the dimension wall is 5m×1m×5m. The results 
are verified by standard displacement method in Table 7. 
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Fig. 17 The applied loads and boundary condition of thick wall structure 

 
Table 7 Comparison between nodal displacements obtained by proposed force method and displacement method 

Node label a b c d e f 

D
isplacem

en
t m

eth
od

 

)(m

ux

 

Linear 
-

0.000101605 
-

0.000101470 
-

0.000100347 
-

0.000099177 
-

0.000098720 
-

0.000099067 

Quadratic 
-

0.000282728 
-

0.000283972 
-

0.000281390 
-

0.000278939 
-

0.000277491 
-

0.000279518 

)(m

uy

 

Linear 
-

0.001332250 
-

0.001288580 
-

0.001242980 
-

0.001195120 
-

0.001145740 
-

0.001097410 

Quadratic 
-

0.003451220 
-

0.003358890 
-

0.003264150 
-

0.003164890 
-

0.003061760 
-

0.002962390 

)(m

uz

 

Linear 
-

0.000263179 
-

0.000237067
-

0.000210461
-

0.000184183
-

0.000158512 
-

0.000133218

Quadratic 
-

0.000685347 
-

0.000616882 
-

0.000546970 
-

0.000478096 
-

0.000409829 
-

0.000343088 

P
roposed

 force m
ethod

 
)(m

ux

 

Linear 
-

0.000101630 
-

0.000101529 
-

0.000100406 
-

0.000099233 
-

0.000098740 
-

0.000099139 

Quadratic 
-

0.000282791 
-

0.000283962 
-

0.000281393 
-

0.000278857 
-

0.000277576 
-

0.000279610 

)(m

uy

 

Linear 
-

0.001332298 
-

0.001288607 
-

0.001242986 
-

0.001195163 
-

0.001145798 
-

0.001097509 

Quadratic 
-

0.003451272 
-

0.003358832 
-

0.003264242 
-

0.003164890 
-

0.003061837 
-

0.002962488 

)(m

uz

 

Linear 
-

0.000263085 
-

0.000237063 
-

0.000210526 
-

0.000184163 
-

0.000158535 
-

0.000133224 

Quadratic 
-

0.000685341 
-

0.000616803 
-

0.000546978 
-

0.000478170 
-

0.000409729 
-

0.000343107 
 

Conclusions 

The main conclusions of this paper are as follows: 
Solution of many examples reveals that good accuracy 

can be achieved by the present algorithm as shown in 
Tables 5 and 6. 

 Flexibility matrices obtained are highly sparse 

with narrowly banded. This is due to the use of regional 
cycles of the natural associate graphs and appropriate 
ordering of the selected self-equilibrating systems. 

 The conditioning of the flexibility matrices 
generated by the present algorithm is better than those 
formed by the LU method, as illustrated is Tables 5 and 6. 

 Due to a high reduction in the number of floating 
point operations, the resulted null basis has better accuracy 
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in comparison to other methods. This is obvious, since 
more than 65% of the null vectors are selected without 
numerical analysis and the remaining null vectors are 
obtained with working on small and limited lists. 

 The required computational time for the present 
method is considerably lower than those of the algebraic 
methods. Since the complexity of the LU method is O(n3), 
if the DSI of the model increases, then the time difference 
dramatically rises. Here, O(n3) shows that the algorithm 
has order of n3 time complexity, with n being the size of 
the problem. 

 In the present method, numbering the nodes of a 
finite element model is less important and only a suitable 
ordering of the members of the natural associate graph is 
required for reducing the bandwidth of the flexibility 
matrices. 

 The method developed in this paper can easily be 
extended to the analysis of FEMs containing other types of 
elements. 

 Though no symmety is utilized in this paper, 
however, one can use symmetry in the force method 
similar to the displacement approach [29-31]. 
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