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Abstract

Formation of a suitable null basis is the main problem of finite elements analysis via force method. For an optimal
analysis, the selected null basis matrices should be sparse and banded corresponding to sparse, banded and well-conditioned
flexibility matrices. In this paper, an efficient method is developed for the formation of the null bases of finite element models
(FEMS) consisting of tetrahedron elements, corresponding to highly sparse and banded flexibility matrices. This is achieved by
associating special graphs with the FEM and selecting appropriate subgraphs and forming the self-equilibrating systems
(SESs) on these subgraphs. Two examples are presented to illustrate the simplicity and effectiveness of the presented graph-

algebraic method.

Keywords: Three dimensional elements, Tetrahedron elements, Higher order elements, Finite element method, Force method,

Null basis matrix, Flexibility matrix, Graph Theory.

1. Introduction

The force method of structural analysis in which the
member forces are used as unknowns is appealing to
engineers since the properties of members of a structure
most often depend on the member forces rather than joint
displacements. This method was used extensively until
1960. The advent of the digital computer and the
amenability of the displacement method for computation
attracted most researchers. As a result, the force method
and some of the advantages it offers in optimization and
non-linear analysis and optimization has been neglected.

Five different approaches are adopted for the force
method of structural analysis, classified as: Topological
force methods, Graph theoretical methods, Algebraic force
methods, Mixed algebraic-combinatorial force methods,
and Integrated force method.

Topological methods have been developed by
Henderson [1] Maunder [2] and Henderson and Maunder
[3] for rigid-jointed skeletal structures. Graph theoretical
methods based on cycle bases of the graph models are due
to Kaveh [4-5]. These methods are generalized to cover
different types of skeletal structures such as rigid-jointed
frames, pin-jointed planar trusses and ball-jointed space
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trusses in [6-7].

Algebraic methods have been developed by Denke [8],
Robinson [9], Topgu [10], Kaneko et al. [11], and Soyer
and Topcu [12]. Mixed algebraic-topological methods
have been used by Gilbert et al. [13] Coleman and Pothen
[14-15], Pothen [16], and Heath et al. [17]. The integrated
force method has been developed by Patnaik [18-19], in
which the equilibrium and compatibility conditions are
satisfied simultaneously in terms of the element force
variables.

Recently applications of the graph theory methods are
extended to two classes of finite element models. The first
class takes the element forces along the edges of the
elements [20-25] and in the second class the element
forces are concentrated at the mid-edge of the edges of the
elements [26].

In this paper, an efficient method is developed for the
formation of null bases for finite element models
comprising of tetrahedron elements leading to highly
sparse and banded flexibility matrices, and can be used for
optimal finite element analysis by the force method. This
is achieved by associating a special graph to the finite
element model and selecting subgraphs (known as y-cycles
[6]) for the formation of localized self-equilibrating stress
systems (null vectors). Their numerical values are
calculated by an algebraic process. The efficiency and
accuracy of the present method is illustrated through
simple examples.
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2. Formulation of Force Method

Consider a discrete or discretized structure which is
statically indeterminate. The m-dimensional vector r
contains independent element (member) forces, and an n-
dimensional vector p denotes the nodal loads. The
equilibrium equations of the structure can then be
expressed as:

Ar=p (D)

where A4 is an nxm equilibrium matrix. Assuming
stability for the structure, the equilibrium matrix will have
full rank, i.e. t=m-n>0, rank(A)=n.

Also the member forces can be written as the sum of
the particular and complementary solutions, where ¢ is the
t-dimensional vector of the redundant forces.

r=B;p+Bq )

By and B, have m rows and n, and t columns,
respectively. Pre-multiplying both sides of Eq. (2) by 4
and using Eq. (1) lead to

AB, =1 A3)
AB, =0 “)

Here, By, and B, are not unique for a structure and
many of such matrices can be formed. B, is called static
basis or self-stress matrix. This basis is known as null
basis in mathematics and each column of the null basis
matrix is known as a null vector. The null space and null
vectors are mathematical counterparts of the
complementary solution space and self-equilibrating
systems, respectively.

Minimizing the complementary potential energy
subjected to the constraint as in Eq. (1) requires r to
minimize the quadratic form

minimize(3 r'Fyr) )

Here, F,, is a mxm block diagonal matrix known as the
unassembled flexibility matrix containing the flexibility
matrices of the elements of a structure in its block diagonal
entries. Coupling Eq. (5) and Eq. (2) results in

q=-(BF,,B,)"'(B{F,B,)p (©6)
According to Eq. (6) by solving a set of equations,
redundant forces can be found.
After the determination of the member forces, using

the load-displacement relationship for each member, one
can write member distortion as

RN SR o
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Using virtual work, nodal displacements can be
calculated as

[vo]= B4 Ju] ®
Combining Eq. (7) and Eq. (8) leads to

vo =B(F,Bp + BoF,,Byq ©)

Substituting Eq. (6) in Eq. (9) and using Dj; = B}FmB j

leads to
Vo = [Doo - D01Df11D10}’ =Fp (10)

Therefore the overall flexibility matrix of structure is
obtained as

F=D, —D01Df11D10 (11

For free vibration of linear structure without damping
we have

[K]-oM]fv,]-0 (12)

Obviously Kv,=p and substituting Eq. (10) in Eq.
(12) leads to

[1]- &’ M]F][p] -0 (13)

Then the frequency equation of the system in the force
method is obtained as

[M]F]- 1] =0 and 2 =1/ (14)

Efficiency of this analysis depends on the required time
for the formation of the matrix G =B|F,B, and its

characteristics, i.e. sparsity and bandedness together with
its conditioning. For the formation of a well-structured
matrix G, one should select a well-structured B, matrix.

Many algebraic procedures based on various matrix
factorizations such as Gauss-Jordan elimination, LU, QR,
LQ exist for the formation a null basis matrix B; of an
equilibrium matrix 4 [13-17]. Basic concept of these
methods is described briefly in the following. Let matrix 4
be partitioned using a column permutation matrix P as
below:

AP =[A,A,] (15)

Where A; is a nxn non-singular matrix. Obviously
matrix B, can be written as
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-1
B, :P{_All Aﬂ (16)

Turn-back method

This method is developed in [10-11] and it is briefly
described in this section. We write the matrix 4= (a;, a;,
as,....a,) by columns. A start column is a column such
that the ranks of (a;, a,, as,..., a,.;) and (a;, a;, as,..., a,)
are equal. Equivalently, a; is a start column if it is linearly
dependent on the lower-numbered columns. The
coefficients of this linear dependency give a null vector
whose highest numbered non-zero is in position S. It is
easy to see that the number of start columns is t=m —n,
which is the same as the dimension of the null space of A.

The start column can be found by performing a QR
factorization of A, using orthogonal transformations to
annihilate the sub-diagonal non-zeros. Suppose that in
carrying out the QR factorization we do not perform
column interchanges but simply skip over any columns
that are already zero on and below the diagonal. The result
will then be a factorization of the form

(17

The start columns are those columns where the upper
triangular structure jogs to the right, that is, a is a start
column if the highest non-zero position in column S of R is
no larger than the highest non-zero position in earlier
columns of R.

The Turn-back method finds one null vector for each
start column a, by ‘turning back’ from column s to find the

smallest k for which columns (a,, @, a,.s,..., asz;) are
linearly dependent. The null vector has a non-zero only in
position s — k through s. Thus, if k is small for most of the
start columns, then the null basis will have a small profile.
Note that the Turn-back operates on 4, and not on R. The
initial QR factorization of A4 is used only to determine the
start columns, and then discarded.

The null vector that Tumn-back finds from start column
a; may not be non-zero in position S. Therefore, turn-back
needs to have some way to guarantee that its null vectors are
linearly independent. This can be accomplished by
forbidding the left-most column of the dependency for each
null vector from participating in any later dependencies.
Thus, if the null vector for start column a, has its first non-
zero in position s — K, every null vector for a start column to
the right of a, will be zero in position s — k.

3. Independent Element Forces and Flexibility
Matrix of Tetrahedron Elements

For the generation of the equilibrium matrix A of a
FEM, a system of independent force systems should be
defined and also their relations with the element nodal
forces should be established [27].

In displacement method we have three forces at each

node of the element. For an element with N nodes, 3xN
nodal forces can be defined. Using six equilibrium
equations, 3N —6 independent forces will be remained. In
other words, there are 3N —6 independent element forces
in an element with N nodes. The nodal forces and element
forces systems are shown in Table 1 for tetrahedron
elements with various numbers of boundary nodes. For the
higher order elements, the element forces system can be
obtained with the same procedure.

Table 1 The nodal forces and element forces systems for various tetrahedron elements.

Element Nﬁzzrs()f Size of T Nodal Forces S Elemental Forces F Element shape
Linear 4 4x6 S S Fox1 =[Fi.-Fel'
Quadratic 10 30x24 S30.1 =[5;.-S30 1" Foa =[FFou 1!
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Cubic 20 60x54

Quartic 35 105%99

S()Oxl = [51~~860]t

SlOle = [51"5105]t

F54><1 = [':1~-F54]t

F99><1 = [':1~-F99]t .

These element forces F can be related to the nodal
forces § for a N-node element by a (3N)x(3N —6)

transformation matrix using Eq. (18) as

(n,n)=end nodes of element force F

For i=1:N

For j=1:3N-6
If  i==n
If i==n,
End

End

where X;, y; and z; are the Cartesian coordinates of

) X, — X; =Y Zi —7;

node i, my=—--2 n;= iV and pj=——
I I I
are the direction cosines and I is the length of the line

between nodes i and j.

Formulation of a discrete element equivalent to the
actual continuous structure is the first step in matrix
structural analysis. For a linear system it can be assumed
that the stresses o are related to the forces F by linear
equation as

c=cF (19)
The matrix ¢ represents a statically equivalent stress

system due to the unit force F. The flexibility matrix of an
element can be written as
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S=TF (18)

Transformation matrix can be formed simply as

T@i-2,j)=m,, and T@i-1Lj)=n,, and T@Gi,j)=pyn,
T@i-2,j)=m,, and T@Gi-Lj)=n,, and T(@i,])=py,

£ = jv cloedv (20)

The integration is taken over the volume of the
element, where ¢ is the matrix relating the stresses to
strains € = @& in three dimensional problems. The primary
step in the formation of the flexibility matrix of an element
is determining the matrix c. It is obvious that the i"
column of ¢ represents the resultant stresses due to unit
element force F; in the force method and also stresses due
to nodal forces S is equal to the i™ column of 7 utilizing
the displacement method. Hence, we can form matrix ¢
using the stiffness properties of the tetrahedron element
using the displacement method. Now the flexibility matrix
of the element in the force method is formed from Eq. (20)
using Gauss numerical integration method with eight
Gauss points (2x2%2 Gauss Points Integration).
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4. Graphs Associated with Finite Element Models
4.1. Basic graph theory definitions

A graph S consists of a set of elements, N(S), called
nodes and a set of elements, M(S), called members,
together with a relation of incidence which associates two
distinct nodes with each member, known as its ends. Two
nodes of a graph are called adjacent if these nodes are the
end nodes of a member. A member is considered incident
with a node if it is an end node of the member. The degree
of a node is the number of members incident with that
node. A subgraph S; of a graph S is a graph for which N(S;)
< N(S) and M(S;) < M(S), and each member of S; has the
same ends as in S. A path of S is a finite sequence P; = {n,,
my, ny, ..., m,, n,} whose terms are alternately distinct
nodes n; and distinct members m; of S for 1 <i < p, and n;
and n; are the two ends of m;. Two nodes n; and n; are said
to be connected in S if there exists a path between these
nodes. A cycle is a path (ny, my, ny,..., m,, n,) for which n,
=n, and p > 3; i.e. a cycle is a closed path. The cycles of a

graph form a vector space known as the cycle space. The
dimension of this space for a connected graph S is known
as the first Betti number, bi(S) = M(S)-N(S)+1, of the
graph, where M(S) and N(S) are the number of members
and nodes of S, respectively. In order to transfer the
topological property of a finite element model to the
connectivity of a graph ten different graphs are introduced
in [28-29].

4.2. An interface graph

The interface graph of a finite element model denoted
by IG(FEM) can easily be constructed for tetrahedron
FEM using the following rules:

1. This graph contains all the nodes of the FEM.

2. For each tetrahedron element of FEM, 3N —6
graph members are associated. The edges of the interface
graph will be numbered sequentially according to the
patterns which were illustrated in Table 2. As was
illustrated in Table. 2, there are some internal graph
members in interface graph of a cubic, quartic or higher
order tetrahedron element.

Table 2 Element forces and internal graph member for various tetrahedron members.

Element shape

Element forces Internal members

Linear @

Quadatic

Cubic
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Quartic

[9,11],[11,13]
[13, 9],[16,18]
[18,33],[33,16]
[19,21],[21,34]
[34,19],[15,32]
[32,22],[15,22]
[2.,35],[3.35]
[4.,35],[09.35]
[11,35],[13,35]
[15,35],[16,35]
[18,35],[19,35]
[21,35],[22,35]
[32,35],[33,35]
: [34,35]

4.3. Natural associate graph

The natural associate graph represented by NAG(FEM)
is constructed by the following rules:

1. Nodes of the NAG(FEM) correspond to the
elements of FEM.

2. For each pair of elements in FEM having
specified number of common nodes, one member is added
between the corresponding two nodes in NAG(FEM). The
number of common nodes is dependent on the order of
FEM elements. If two tetrahedron elements have these
common nodes, they are adjacent or they have common
side. According to Table 1, the number of common nodes
for each type of element is as follow:

Number of common
Element nodes for two
adjacent elements

Linear 3
Quadratic 6
Cubic 10
Quartic 15

NAG(FEM) can be constructed using the following
procedure: One of the preliminary steps in FEA is defining
the elements with their connected nodes. In this way the
element connectivity matrix is constructed which contains
the element-node incidence relationships. In the process of
constructing the element connectivity matrix, another
matrix which contains node-element incidence properties
can be formed. This matrix is named the node connectivity
matrix. Now using the element connectivity and the node
connectivity matrices leads to an algorithm with
complexity O(n) for an efficient generation of NAG.

In order to recognize the adjacent elements to the n™
element which have common nodes or one common face,
first the connected nodes to the n™ element are identified
from the element connectivity matrix. In the subsequent
step using the node connectivity matrix, elements which
have at least one common node with the n™ element are
identified. Now it is convenient to seek for the adjacent
elements in this reduced search space. A FEM with 24
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tetrahedron elements and its corresponding NAG are
illustrated in Fig. 1.

L
Py °
e Q®
e © T
e o e ©
° o
o .
¢
(a) (b)

Fig. 1 (a) Finite element model with 24 tetrahedron elements, (b)
Natural associate graph (NAG)

4.4. Negative incidence number

Negative incidence number (NIN) is necessary for each
node of NAG(FEM). This number can be found as
following:

After generation of natural associate graph of the FEM,
use an efficient method for its nodal numbering. A typical
edge of the graph connects smaller number to the node
with higher number. Negative incidence number of each
node is the number of its adjacent nodes with smaller
nodal number. Except the node numbered as 0, all the
other nodes have one, two or three negatively incident
edges defined as the negative incidence number of the
node. Owing to the importance of these numbers in
recognizing the types of SESs, the negative incidence
numbers of the nodes of the graph should carefully be
calculated. In Fig. 2, a tetrahedron FEM with element
numbering, its corresponding associate graph and negative
incidence number of nodes are shown. The nodes should
be numbered such that the incidence numbers do not
become large. Any simple nodal ordering will lead to a
logical ordering.
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(a) (b)
Fig. 2 Finite element model with natural associate graph (red
part); (a) nodal numbering of NAG; (b) negative incidence
numbers of NAG

5. Pattern Corresponding to the Self-
Equilibrating Systems

Considering Table 2, in order to find the patterns
corresponding to the self-equilibrating systems, a
tetrahedron element is simulated as a spatial truss formed
as the 1-skeleton of the tetrahedron element together with
some diagonal and internal members. This is possible
since the independent element forces are applied in the
nodes and are along the edges of the element. In Fig. 3,
two interface graphs with four linear and quadratic
elements are shown which are simulated as a spatial truss
containing some multiple members.

Fig. 3 (a) An IG(FEM) of four linear elements, b) An IG(FEM)
of four quadratic elements

The statical indeterminacy of a spatial truss with m
members and n nodes is given as y(S)=m-3n+6;

therefore, the degree of statical indeterminacy (DSI) of the
entire model supported in a statically determinate manner

can be calculated with the same relationship as
DSl =(3N —6)xM —3n+6 @1

where M is the total number of finite elements, N is the
number of nodes of one element and n is the total number
of nodes of the FEM.

With the above simulation, the patterns of the self-
equilibrating systems can be identified as follows:

5.1. Type I self-equilibrating systems

For each k multiple member in equivalent truss model
of FEM, there are k unknown forces and one equilibrium
equation in the member’s direction. Thus DSI of the
substructure is equal to k-1 and k-1 self-equilibrating
systems can be generated on each k multiple member of
interface graph of the FEM. In this way, first each k
multiple members are arranged in ascending order as (M,
my, M3,..., M1, mk) where (ml <M <M3<..<Mgg < mk).
Each selection of two members from this list is valid to
construct a type I self-equilibrating system, but in order to
achieve a better bandwidth reduction; selection of adjacent
members from the defined list is preferable. Therefore k-1
duplicate members are selected as (m;, m,), (My, My),...,
(M1, my). Each pair (m;, m;) with i < j represents the
numbers of corresponding self-equilibrating system. The
member with bigger number is selected as the generator of
the current SES and also as a redundant force. The null
vectors corresponding to the type I SESs have two non-
zero entries in rows i and j equal to —1 and 1, respectively.

For FEMs with tetrahedron elements, more than 65%
of the total self-stress systems are of Type I. Thus, a large
percent of the minimal null vectors can be formed only by
the determination of member numbers of these pairs. It
should be noted that in the process of the formation of the
interface graph, these pairs and their numbers can simply
be identified.

5.2. Type Il self-equilibrating systems

There are other types of self-equilibrating systems
which are extracted from two adjacent elements of FEM.
In other words, for two adjacent elements with N nodes,
the DSI can be calculated as:

DSI =(3N -6)xM —3n+6 -
= DSl =(3N - 6)x2-3x (2N —commonnodes) + 6 (22)

According to above equation, DSI of two adjacent
elements for various orders can be obtained as
demonstrated in Table 3. The number of SESs of Type I is
the same as common member of adjacent element. Thus
the number of remaining self-equilibrating systems is

0 — Linear element
3 — Quadratic element
9 — Cubicelement
15  — Quarticelement

Type Il = DSI —Type | = 23)
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Table 3 The DSI, SESs of Type I and II of two adjacent elements.

n m DSI Type 1 Type
Element N Common nodes 2N-common nodes  2%X(3N-6) m-3n+6 commyol:t edges i]f
Linear 4 3 5 12 3 3 0
Quadratic 10 6 14 48 12 9 3
Cubic 20 10 30 108 24 15 9
Quartic 35 15 55 198 39 24 15

In other words, these SESs should be extracted from
two adjacent elements. For example, the remaining
subgraphs for two adjacent elements are shown in Fig. 4.
After deleting the generators corresponding to type I SESs,
the null vectors should be calculated from the remaining

subgraph. These null vectors can easily be generated on
the corresponding sub-structure utilizing an algebraic
method. It should be noted that for linear elements, there is
no SES of Type IL.

Apart from the aforementioned about generating the
SESs of Type II, if there is at least a negative incidence
number higher than one in a FEM, another important point
should be considered which is explained below:

Some of the calculated SESs of Type II are not
independent of the others. For example, for a FEM with
four elements, four couple of adjacent elements can be
recognized. The number of SESs of Type II can be
obtained according to Eq. (23). It means that for each
couple of two adjacent elements, 3, 9 or 15 SESs of Type
II should be extracted. But, some of these SESs are
dependent and should not be selected. For determining the
independent SESs, an appropriate approach is proposed. In
this approach, independent SESs will be recognized
utilizing negative incidence number of elements and QR
factorization method, simultaneously.

The SESs of Type II are extracted from two adjacent
elements in a FEM which are the same as members of
NAG(FEM). If a member of NAG(FEM) connects two
elements M; and M; where NIN; >1or NIN;>1, the

independent SESs of Type II which can be extracted from
the subgraph corresponding to these two adjacent elements
can be recognized by QR factorization method.

The dependent SESs can be found by performing a QR
factorization of B, =[B/**' B ],
transformations to annihilate the sub-diagonal non-zeros
where

using orthogonal
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B/*™' : all SESs of Type I

B;*™" : all independent SESs of Type Il which are

calculated up to now.

Suppose that in carrying out the QR factorization we
do not perform column interchanges but simply skip over
any columns that are already zero on and below the
diagonal. The dependent SESs are those columns where
the upper triangular structure jogs to the right, that is,
column s is dependent SESs if the highest non-zero
position in column s of R is no larger than the highest non-
zero position in earlier columns of R.

5.3. Type 1l self-equilibrating systems

Sub-structures which are topologically identical to the
minimal cycles of the natural associate graph of FEM
contain some type I, II and one or six type III self-
equilibrating systems. In general, two types of minimal
cycles can be extracted from the associate graph of an
FEM. These cycles are as follows:

a) Type I minimal cycles of NAG(FEM)

In these cycles all the corresponding finite elements
have at least two common nodes. Each cycle in this type
passes through M finite elements as illustrated in Fig. 5.
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Corresponding interface graph of these M elements
have n nodes and m edges for a FEM with N node
elements which was calculated in Table 4. The DSI can be
obtained, too.

By considering the SESs of Type I and II, the
indeterminacy of remained subgraph is equal to 1 for all
type of elements as

Fig. 5 Minimal cycles of NAG(FEM) pass through M finite elements which have at least two common nodes.

B Vg

Type Il =DSI —(Type | +Type 1I)

Linear — BM)-=(BM -1 1
_ |Quadratic -  (12M =3)~(OM -2)+(3M -2)) _ |1 24
] cubic o (24M —6)—(15M =2)+(OM =5)) |1

Quartic — (39M —9)—((24M —4)+(15M —6)) |1

Thus, each Type I cycle corresponds to one null vector and
the numerical values are calculated utilizing an algebraic
method.

Table 4 Calculation of Type I cycle of NAG

m n DSl Type I Type I Type III SESs
Element Number of -\ ber of Nodes (m-3n+6) SESs SESs (DSI - Type I -
members Type II)
Linear Mx6 Mx4 - Mx3 +2 M 3M-1 0 1
Quadratic Mx24 Mx10 - Mx6 + 3 12M-3 IM-2 3M-2 1
Cubic Mx54 Mx20 - Mx10 + 4 24M-6 15M-2 IM-5 1
Quartic Mx99 Mx35-Mx15+5 39M-9 24M-4 15M-6 1

It should be noted that all the null vectors
corresponding to cycles cannot be used in the formation of
the final null basis. In other words, some of these SESs are
dependent and should be selected and ignored. Here, QR
factorization method should be applied to recognize
dependent vectors.

b) Type Il minimal cycles of NAG(FEM)

o

(%

(a)
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Each minimal cycle that surrounds an opening is called
the type II minimal cycle. For example, consider Fig. 6. In
this figure, a cube is divided in to five tetrahedron
elements. Using twelve cubes or sixty tetrahedron
elements, an opening with its NAG is generated. In this
NAG there is a minimal cycle of type II.

(e

(b)
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()
Fig. 6 (a) A cube comprising of five tetrahedron elements, (b) NAG of a cube, (c)A FEM with sixty tetrahedron elements conclude a
minimal cycle of type II and its NAG

Such a cycle passes through M’ finite elements and its

(N —common nodes)x M'nodes  and M'x (3N -6)
corresponding interface graph has members. The DSI of subgraph is
DSI =M'x (3N —6)—3x (N —common nodes)xM'+6
linear —» N=4 commonnodes =3 3M'+6
Quadratic—> N =10 commonnodes =6 DSl = 12M"+6 (25)

Cubic — N=20 commonnodes=10 24M'+6

Quartic - N =35 commonnodes=15 3I9M'+6
linear — 3 linear — 0
, Quadratic— 9 , Quadratic— 3

and M'x . SESs of type T and M'x . SESs of type II can be extracted.

Cubic —15 Cubic —»9
Quartic —24 Quartic —»15

-—
number of members
of commonsideof
twoadjacentelements

-—
number of SESsof Typell
between two adjacentelements

The remaining SESs which can be extracted from interface graph corresponding to type II minimal cycle of NAG are

linear — 3M'+6 3M’ 0
Quadratic—>12M'+6 | 9M' 3M’

Type 1l = DSI — (typel & 11) = - +
» (e ) Cubic —24M'+6 |15M" 9M’

6

6

=6 (26)
6

Quartic -»39M'+6 |24M' 15M'
— —— =
DSl Typel Type ll

Therefore, each type II minimal cycle corresponds to six
null vectors which are calculated utilizing an algebraic
method.

because by eliminating these generators from IG(FEM),
the sub-structure of primary structure of the IG(FEM)
must remain stable. To achieve this, the following rule for
appropriate selection of generators of type II SESs is
suggested.

In each SES of type I, the member with bigger number

6. Selection of Generators

The most important point in type II and type III self-
equilibrating systems is to select appropriate generators,

356

is selected as the generator of the current SES and also as a
redundant force. By now, in each subgraph corresponding
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to Type II and type III SESs, those members are selected
as the generators which have three properties as follows:

1.  The candidate member was not selected as
generator of previous SESs of any types.

2. By deleting the selected member, the remained
subgraph will be stable.

3. The selected member has non-zero entries in an
independent null vector.

7. Algorithm

Step 1: Generate the associate graph of the FEM and
use an efficient method for its nodal numbering [26]. It is
obvious that good numbering of this graph corresponds to
good numbering of elements of the FEM. This numbering
leads to a banded adjacency matrix of the graph and
correspondingly to a banded flexibility matrix. Since
numbering the members of the interface graphs
corresponds to the element numbering of the finite
elements, such a numbering is the only parameter for
controlling the bandwidth of the flexibility matrix.
Negative incidence number of the NAG(FEM) should be
calculated in this step.

Step 2: Set up the equilibrium matrix of the FEM.

Step 3: Generate the interface graph and perform its
numbering. The numbering of this graph should be
performed according to the element numbering of the
considered FEM. After this numbering the interface graph
can easily be formed and its members can be numbered.

Step 4: Find the type I self-equilibrating systems. All
multiple members of the interface graph are identified and
the values —1 and 1 are assigned to appropriate rows
(corresponding to the member numbers) and the
corresponding minimal null vectors are created.

Step 5: Find the type II self-equilibrating systems. The
SESs of type II should be extracted from two adjacent

elements and independent ones should be selected among
these SESs utilizing the approach which is explained in
Sec.5.2. Calculate the corresponding null vectors from the
relevant equilibrium sub-matrix in this step. Selection of
generators should be done here.

Step 6: Find the type III self-equilibrating systems. For
each minimal cycle of natural associate graph of FEM one
or six SESs should be extracted as was described in Sec.
5.3. Calculate the corresponding null vectors from the
relevant equilibrium sub-matrix and select their generators.

Step 7: Order the null vectors. At this step the
constructed null vectors should be ordered such that their
last non-zero entries form a list with an ascending order.

8. Numerical examples

In this section two FEMSs are considered, which are
assumed to be supported in statically determinate fashion.
The equilibrium matrices are formed. Null bases and the
flexibility matrices are constructed and the required
computational times, and the condition numbers are
calculated. In all the following examples, nz represents the
number of non-zero entries and Amax/Amin is the ratio of
the extreme eigenvalues taken as the condition number of
a matrix. The comparison between present algorithm and
algebraic force method will be shown in this section.
Finally the present method is wvalidated through
comparison of analysis using the present graph-theoretical
force method and the displacement method.

Example 1.

A thick beam-type structure supported in a statically
determinate fashion is depicted in Fig. 7. The natural
associate graph of FEM is illustrated in Fig. 8.This
structure is discretized using 240 tetrahedron finite
elements. The properties of the model are as follows:

Number of tetrahedron elements, M = 240
Elastic modulus, E = 2e+7 kN/m2
Poisson’s ratio , v=10.2

Number of nodes, N

DSI
Number of type I SESs
Number of type I SESs
Number of type III SESs

Linear = Quadratic Cubic Quartic
205 1,053 1,525 3,321
1,131 4,167 8,391 13,803
1,012 3,212 5,588 8,800

0 836 2,684 4,884
119 119 119 119
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Fig. 8 Natural associate graph of FEM for thick beam-type structure of example 1

The pattern of equilibrium matrix is shown in Fig. 9 for
various elements. The pattern of the final null basis
obtained by the present method and LU factorization

is also well-structured as shown in Fig. 11. The
comparison between present method and LU factorization
method is prepared in Table 5.

method are depicted in Fig. 10. The flexibility matrix (G)
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Fig. 10 Pattern of null basis matrix of example 1, a) Linear element, b) Quadratic element, ¢) Cubic element, d) Quartic element

500 -

200
1000

400 1500}
2000 |
500
2500
800 3000 |
3500 |
1000
4000 | +y V]
0 200 400 500 800 1000 O 500 1000 1560 2000 2500 3000 3500 4000
nz = 5941 nz = 48181
(@ (b)

International Journal of Civil Engineering, Vol. 12, No. 2, Transaction A: Civil Engineering, June 2014 361



1000

2000

Joo0

4000

S000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 3000
nz = 216533

(©

2000

4000

6000

8000

10600

12000

[ 2000

4000

6000 3000

nz = 692511

(d)

10000 12000

Fig. 11 Pattern of flexibility matrix Blt B, using present method for example 1, a) Linear element, b) Quadratic element, ¢) Cubic element, d)
Quartic element

Table 5 The comparison between present method and LU factorization method for Example 1

)hnax t
Time present method nz (Bl present method ) ,1_.(81 x Bl ) maxlA x Bll
Element - min
TIMe |y methog NZ (B .y method) present LU present LU
method method method method
Linear 0.57 0.161 4.6letd 3.45e+5 2.22e-16  1.38e-14
Quadratic 0.16 0.074 2.23et+5 8.45¢+6 1.33e-15  5.54e-13
Cubic 0.01 0.028 4.96e+5 2.64et7 1.13e-14  9.44e-12
Quartic - - 4.53e+4 - 7.25e-14 -
Example 2. 13.This structure is discretized using 504 tetrahedron finite

A thick wall structure is depicted in Fig. 12. The
natural associate graph of FEM is illustrated in Fig.

Number of tetrahedron elements, M = 504

Elastic modulus, E = 2e+7 kN/m2

Poisson’s ratio , v=10.2
Number of nodes, N

DSI
Number of type I SESs
Number of type II SESs
Number of type III SESs

Linear Quadratic
195 1,053
2,445 8,943
2,166 6,388
0 1,776
279 279
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elements. The properties of the model are as follows:
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Fig. 12 A thick wall structure

Fig. 13 Natural associate graph of FEM for thick wall structure of example 2.

The pattern of equilibrium matrix is shown in Fig. 14 for is also well-structured as shown in Fig. 16. The
linear and quadratic elements. The pattern of the final null comparison between present method and LU factorization
basis obtained by the present method and LU factorization method is prepared in Table 6.

method are depicted in Fig. 15. The flexibility matrix (G)
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Fig. 16 Pattern of flexibility matrix Blt B, using present method for example 2, a) Linear element, b) Quadratic element

Table 6 The comparison between present method and LU factorization method for example 2.

R /1nmx t
Element Time present method nz (Bl present method ) T(Bl x Bl ) maX|A X Bl |
min
TIMe Y retnod NZ (B, ymetnos ) “present LU present LU
method method method method
Linear 0.38 0.135 5.50e+5 5.52e+5 4.77e-15 2.81e-13
Quadratic 0.09 0.072 2.15e+6 2.30e+7 2.05¢-14 2.84e-12

Finally the present method is validated through
comparison of nodal displacements using the present
graph-theoretical force method and the displacement
method. Six concentrated forces are applied at the six

nodes of wall and the structure is supported in a statically
determinate fashion as shown in Fig. 17. The amount of P
is 10 kN and the dimension wall is 5™x1™x5™. The results
are verified by standard displacement method in Table 7.
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Table 7 Comparison between nodal displacements obtained by proposed force method and displacement method

Node label a b c d e f
- Uy Linear (000101605 0.000101470 0.000100347 0.000099177 0.000098720 0.000099067
% (M) Quadratic 0000282728 0.000283972 0.000281390 0.000278939 0000277491 0.000279518
% uy,  Limear 001335750 0001288580 0.001242980 0.001195120 0.001145740 0.001097410
:;: (M) Quadratic 0003451220 0003358890 0.003264150 0.003164890 0.003061760 0.002962390
g Linear (000263179 0.000237067 0.000210461 0000184183 0.000158512 0.000133218
(M) Quadratic 0.000685347 0000616882 0.000546970 0.000478096 0.000409829 0000343088
L Linear (000101630 0.000101520 0.000100406 0.000099233 0.000098740 0.000099139
é (M) Quadratic 0.000282791 0000283962 0.000281393 0.000278857 0.000277576 0.000279610
% u,  Linear 001335708 0001288607 0001242986 0.001195163 0.001145798 0.001097509
§ (M) Quadratic 0003451272 0003358832 0.003264242 0.003164890 0.003061837 0002962488
g ) ] ] . ; ;
g u, Limear 400263085 0.000237063 0.000210526 0.000184163 0.000158535 0.000133224
(M) Quadratic 0.000685341 0000616803 0.000546978 0.000478170 0.000409729 0.000343107
with narrowly banded. This is due to the use of regional
Conclusions cycles of the natural associate graphs and appropriate

The main conclusions of this paper are as follows:
Solution of many examples reveals that good accuracy
can be achieved by the present algorithm as shown in

Tables 5 and 6.

e  Flexibility matrices obtained are highly sparse

366

ordering of the selected self-equilibrating systems.

e The conditioning of the flexibility matrices
generated by the present algorithm is better than those
formed by the LU method, as illustrated is Tables 5 and 6.

e Due to a high reduction in the number of floating
point operations, the resulted null basis has better accuracy
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in comparison to other methods. This is obvious, since
more than 65% of the null vectors are selected without
numerical analysis and the remaining null vectors are
obtained with working on small and limited lists.

e  The required computational time for the present
method is considerably lower than those of the algebraic
methods. Since the complexity of the LU method is O(n%),
if the DSI of the model increases, then the time difference
dramatically rises. Here, O(n’) shows that the algorithm
has order of N’ time complexity, with n being the size of
the problem.

e In the present method, numbering the nodes of a
finite element model is less important and only a suitable
ordering of the members of the natural associate graph is
required for reducing the bandwidth of the flexibility
matrices.

e  The method developed in this paper can easily be
extended to the analysis of FEMs containing other types of
elements.

e  Though no symmety is utilized in this paper,
however, one can use symmetry in the force method
similar to the displacement approach [29-31].
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